
Advanced R. Chapter 7: EnvironmentsAdvanced R. Chapter 7: Environments
Book by Hadley WickhamBook by Hadley Wickham

Rladies Utrecht (Dewi, Barbara and Ale)Rladies Utrecht (Dewi, Barbara and Ale)

Presenter: Alejandra Hdz SeguraPresenter: Alejandra Hdz Segura

June 23, 2020June 23, 2020

1 / 461 / 46

Welcome!
This is a joint effort between RLadies Nijmegen, Rotterdam, 's-Hertogenbosch
(Den Bosch), Amsterdam and Utrecht

We meet every 2 weeks to go through a chapter

Use the HackMD to present yourself, ask questions and see your breakout room

We split in breakout rooms after the presentation, and we return to the main jitsi
link after 20 min

There are still possibilities to present a chapter :) Sign up at
rladiesnl.github.io/book_club

advanced-r-solutions.rbind.io has some anwers and we could PR the ones missing

The R4DS book club repo has a Q&A section.

This week's chapter: Environments!

2 / 46

https://hackmd.io/fzgOycJzSgGcelsdk5ZKNw?both
https://rladiesnl.github.io/book_club/
https://advanced-r-solutions.rbind.io/
https://github.com/r4ds/bookclub-Advanced_R
https://adv-r.hadley.nz/environments.html

Contents
Environment basics

Recursing over environments

Special environments

Call stacks

As data structures

Let's practice!

3 / 46

Let's start!!

4 / 46

Environment basics
You for sure have used environments

Functions
Packages

Similar to lists... with some exceptions.

In an environment:

Every name must be unique.
The names in an environment are not ordered.
An environment has a parent.
Environments are not copied when modi�ed.

5 / 46

Let's explore environments
library(rlang)

Creating an environment is like creating a list!

e1 <- env(
 a = FALSE,
 b = "a",
 c = 2.3,
 d = 1:3)

6 / 46

Copy on modify vs Modify in place

Modi�ed in place (not copy on modify) means also that environments can contain
themselves!

Copy on modify

Modify in place

7 / 46

Working with environments is special
To print them

e1

<environment: 0x0000000013ea30b8>

env_print(e1)

<environment: 0000000013EA30B8>
parent: <environment: global>
bindings:
 * a: <lgl>
 * b: <chr>
 * c: <dbl>
 * d: <int>

To see what they contain:

env_names(e1)

[1] "a" "b" "c" "d"

8 / 46

Important environments
Current environment or current_env() is where your code is currently executing!

Global environment or global_env() is where you can experiment interactively.
also called 'workspace'.

identical(global_env(), current_env())

[1] TRUE

Note that we did not use normal == operator!

9 / 46

Parents
e2a <- env(d = 4, e = 5)
e2b <- env(e2a, a = 1, b = 2, c = 3)

10 / 46

Finding parents
lobstr::obj_addr(e2a)

[1] "0x1d9ed648"

lobstr::obj_addr(e2b)

[1] "0x1da51d90"

Parent of e2b:

env_parent(e2b)

<environment: 0x000000001d9ed648>

Parent of e2a:

env_parent(e2a)

<environment: R_GlobalEnv>

11 / 46

The orphan environment 😢
All environments have parents except the empty environment or empty_env()

env_parent(empty_env())

Error: The empty environment has no parent

Actually, the empty_env() is sort of everyone else's great-grandma!!

12 / 46

HEY!! Don't forget about me!!

13 / 46

Almost full ancestry

env_parents(e2b)

[[1]] <env: 000000001D9ED648>
[[2]] $ <env: global>

True full ancestry

env_parents(e2b, last = empty_env())

 [[1]] <env: 000000001D9ED648>
 [[2]] $ <env: global>
 [[3]] $ <env: package:rlang>
 [[4]] $ <env: package:knitr>
 [[5]] $ <env: package:stats>
 [[6]] $ <env: package:graphics>
 [[7]] $ <env: package:grDevices>
 [[8]] $ <env: package:utils>
 [[9]] $ <env: package:datasets>
[[10]] $ <env: package:methods>
[[11]] $ <env: Autoloads>
[[12]] $ <env: package:base>
[[13]] $ <env: empty>

Did you notice? The ancestors of the global_env() include every attached package!!

14 / 46

Super assignment <<-
x <- 0 # Normal assignment
x

[1] 0

f <- function() {
 x <<- 1 # Super assignment! Modifies x outside the function!
}
f()
x

[1] 1

15 / 46

Subsetting environments
The good way

e3 <- env(x = 1, y = 2)
e3$x

[1] 1

e3[["y"]]

[1] 2

16 / 46

Subsetting environments
The bad way

e3[[1]]

Error in e3[[1]]: wrong arguments for subsetting an environment

e3$z

NULL

env_get(e3, "xyz") #If you want an error instead of NULL

Error in env_get(e3, "xyz"): object 'xyz' not found

17 / 46

Add/Remove bindings
Add

e3$z <- 3

env_poke(e3, "a", 100)

env_bind(e3, b = 10, c = 20)

env_names(e3)

[1] "x" "y" "z" "a" "b" "c"

18 / 46

Add/Remove bindings
Remove does not work like lists!!

e3$a <- NULL
env_has(e3, "a")

 a
TRUE

e3$a

NULL

You need to unbind instead!

env_unbind(e3, "a")
env_has(e3, "a")

 a
FALSE

19 / 46

Advanced bindings...
Delayed bindings are evaluated the �rst time they are accessed!

env_bind_lazy(current_env(), b = {Sys.sleep(1); 1})
system.time(print(b))

[1] 1

 user system elapsed
 0 0 1

system.time(print(b))

[1] 1

 user system elapsed
 0 0 0

Active bindings are re-computed every time they are accessed:

env_bind_active(current_env(), z1 = function(val) runif(1))

20 / 46

Recursing over environments
How to �nd a variable?

e4b --> e4a --> empty_env

Three possible scenarios:

1. where("a", e4b) will �nd a in e4b.
2. where("b", e4b) doesn’t �nd b in e4b, so it looks in its parent, e4a, and �nds it

there.
3. where("c", e4b) looks in e4b, then e4a, then hits the empty environment and

throws an error.

21 / 46

Special environmentsSpecial environments

22 / 4622 / 46

Function environment
A function binds the current environment when it is created

Functions in R capture or enclose their environments

function = closure

y <- 1
f <- function(x) x+y
fn_env(f)

<environment: R_GlobalEnv>

23 / 46

Package environments
Packages also have parents and are parents themselves!

Ancestry follows the order in which they have been attached! --> search path

search()

 [1] ".GlobalEnv" "package:rlang" "package:knitr"
 [4] "package:stats" "package:graphics" "package:grDevices"
 [7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

24 / 46

Wait a minute...
We know that search path depends on how you loaded packages...

Does that mean that the package will �nd different functions if packages are loaded in
a different order?

25 / 46

Namespace
Make sure that every package works the same way regardless of what packages are
attached by the user.

An example:

sd

function (x, na.rm = FALSE)
sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
 na.rm = na.rm))
<bytecode: 0x000000001e1d99c0>
<environment: namespace:stats>

sd (like any package function) is associated with:

The package environment that is determined by search path

stats::sd

The namespace environment that controls how the function �nds its variables

26 / 46

Understanding how package/namespaces work:

27 / 46

Execution environments
g <- function(x) {
 if (!env_has(current_env(), "a")) {
 message("Defining a")
 a <- 1
 } else {
 a <- a + 1
 }
 a
}

What will the function return the �rst time it’s run?

g(10)

[1] 1

What will happen if I call the function a second time?

g(10)

[1] 1

A new execution environment is created every time you call the function!

28 / 46

Making execution environments less ephemeral
Returning the environment

h2 <- function(x) {
 a <- x * 2
 current_env()
}

e <- h2(x = 10)
env_print(e)

<environment: 000000001D70FAF0>
parent: <environment: global>
bindings:
 * a: <dbl>
 * x: <dbl>

Return an object with a binding to that environment (function factories)

29 / 46

Call stacks
Functions have two contexts:

Execution environment: depends on where the function was created

Call stack: depends on where the function was called

Useful default whenever you write a function that takes an environment as
an argument.

rlang::caller_env()

30 / 46

Simple call stacks
f <- function(x) {
 g(x = 2)
}
g <- function(x) {
 h(x = 3)
}
h <- function(x) {
 lobstr::cst()
}

f(x = 1)

 x
 1. \-global::f(x = 1)
 2. \-global::g(x = 2)
 3. \-global::h(x = 3)
 4. \-lobstr::cst()

31 / 46

Call stack with lazy evaluation
a <- function(x) b(x)
b <- function(x) c(x)
c <- function(x) x

a(f())

 x
 1. +-global::a(f())
 2. | \-global::b(x)
 3. | \-global::c(x)
 4. \-global::f()
 5. \-global::g(x = 2)
 6. \-global::h(x = 3)
 7. \-lobstr::cst()

32 / 46

Dynamic scoping
Looking up variables in the calling stack rather than in the enclosing environment

"Unique" of R.

33 / 46

Environments as Data Structures
Using them as data structures, they can help to solve some problems:

1. Avoiding copies of large data

For other/better ways check R6 objects (Ch. 14)

2. Managing state within a package

Objects in a package are locked, so you can’t modify them directly unless you
create a function that can access them (through environments)

3. As a hashmap

Data structure that takes constant time to �nd an object based on its name
Environments provide this behaviour by default (out of the scope)

34 / 46

ARE YOU AN EXPERT IN ENVIRONMENTS
NOW?!!

35 / 46

Time to practice!!

36 / 46

Question 1

What is the di�erence between lobstr::cst() and
traceback()?

z) traceback() does not work for environments

j) The order of traceback() and lobstr::cst() is reversed

m) lobstr::cst only gives you information about the last environment

37 / 46

Question 2
Let’s say you �rst load package tseries and then chron, both containing a function
named is.weekend.

From which package does R use the function and why?

Also: what does this have to do with environments in R?

i) From the package tseries

o) From the package chron

38 / 46

Question 3

Which of the following characteristics is not a di�erence between an
environment and a named list?

h) Environments are copied when modi�ed, lists are not

m) Every name in an environment must be unique

t) The names in an environment are not ordered

39 / 46

Question 4

Which of the following code will show you the full ancestry of
environment e2b?

e2a <- env(d = 4, e = 5)
e2b <- env(e2a, a = 1, b = 2, c = 3)

n) env_parents(e2b, last = empty_env())

o) env_parents(e2b, last = global_env())

v) env_parent(e2b)

z) env_full_ancestry(e2b)

40 / 46

Question 5

What is the di�erence between assignment (<-) and super
assignment (<<-)? And when is this useful?

w) Assignment modi�es a variable, while super assignment always creates a new
variable.

h) To create a variable in a new environment you always needs to use super
assignment; regular assignment does not work in this case.

s) Assignment creates a variable in the current environment and super assignment
modi�es an existing variable found in a parent environment.

41 / 46

Question 6

Which of the following gives an error?

e8 <- env(x=1, y=2, u=4)

m) e8$w

k) e8[[1]]

v) e8[["u"]]

h) e8[c("x", "y")]

u) none of the above

w) all of the above

e) m, k and h

o) k and h

42 / 46

Question 7

Which of the following code removes an element from an
environment?

 s) rm(e2a$x)

n) env_unbind(e2a, x)

k) e2a$x <- NULL

x) both n and k

c) both s and n

43 / 46

Extra questions

How does R look for objects? Why is this important?

How do you determine the environment from which a function was called?

If you have an environment e2 that contains another environment e1. What would
happen if you change or add a variable in e1. Would e2 be affected? What use do
you see in this behavior?

44 / 46

Full name: Katherine Johnson

Who is she? American mathematician
and one of the �rst African-American
women to work as a NASA scientist.

Answer

J O H N S O N

45 / 46

https://en.wikipedia.org/wiki/Katherine_Johnson

46 / 46

